
Course Structure and Curriculum

Master of Technology

in

Medical Devices

(Effective from 2025-2026)

Biomedical Engineering Department

National Institute of Technology Raipur- 492010

A & Br

VISION AND MISSION OF THE INSTITUTE

VISION

To be a leader in technical and management education in India and to establish a unique identity for the development of high-quality human and knowledge resources in diverse areas of technology and management.

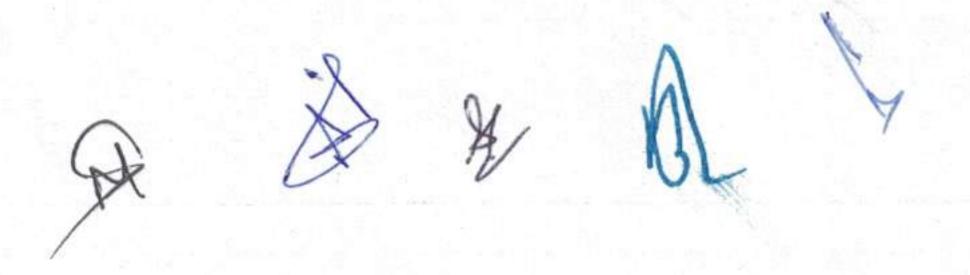
MISSION

To mould young students into rational thinking engineers/individuals who are motivated by a passion for professional excellence driven by human values and proactively engaged in betterment of society

VISION AND MISSION OF THE DEPARTMENT

VISION

To provide society with world class competitive professionals in Biomedical Engineering by making the department as the best through its faculty and graduates, which is a driving force in creating engineering knowledge and novel Biomedical Technology that improve the human condition through advancement of healthcare and Biomedical Sciences.


MISSION

- To educate students to understand the human body as an integrated system through quantitative engineering analysis.
- To use the above understanding to design better therapeutic strategies, devices, and diagnostics.
- To serve society by conducting research that develops quantitative linkages across scales in the human body and uses that development to build new tools to improve human health.
- To serve our wider constituencies by offering our expertise to other health-related professionals, industries, and state communities

Program Educational Objectives (PEOs)

The *Program Educational Objectives* (PEOs) embody the expected accomplishments of students, who successfully graduate from the program. The PEOs for the proposed program are as follows.

PEO-1	Apply technical knowledge and skills as Biomedical Engineers to provide the solutions for the industries and government organizations pertaining to medical devices sectors
PEO-2	Utilize effective communication, team, and project management skills to work productively within their professions and communities.
PEO-3	Conduct themselves in a responsible, professional and ethical manner.
PEO-4	Inculcate an attitude for lifelong learning process

Mapping of Program Educational Objectives (PEOs) to Mission Statements (MS) (Program Articulation Matrix)

Mission Statements	PEO-1	PEO-2	PEO-3	PEO-4
MS-1	3	2	3	3
MS-2	2	3	2	3
MS-3	2	3	2	3
MS-4	3	2	2	3

1-Slight; 2-Moderate; 3-Substantial

Program Outcomes (POs):

The following *POs* attainment would help the successful students passing through the program to achieve the aforementioned PEOs.

PO1: Possess knowledge of modern technological concepts, conduct in-depth studies and experiments and solve practical problems related to Medical Devices.

PO2: Work on multi-disciplinary projects to enhance skills, make effective oral presentations and prepare technical documents effectively.

PO3: Develop professional and ethical attitude and become socially responsible citizens.

PO4: Ability to understand global issues and conduct independent research in the emerging areas related to Medical Devices or interdisciplinary areas.

Mapping of Graduate Attributes (GAs) to Program Educational Objectives (PEOs)

PEOs	PO1	PO2	PO3	PO4
PEO-1	1	√	1	√
PEO-2	1	1	1	V
PEO-3	1	√	1	
PEO-4	1	✓	1	√

Course Outcomes (COs)

Course outcomes are narrower statements that describe what students are expected to know and are able to do at the end of each course. These relate the skills, knowledge and behavior that students acquire in their progress through the course.

Four Cos needs to be identified for each of the course and to be mapped with POs

& & B

Program Specific Outcomes (PSOs)

PSO- 01	Graduating students will be able to apply fundamental knowledge of mathematics, science and biomedical engineering to investigate, identify, formulate and design complex problems in the engineering and computational medical devices and allied multidisciplinary areas ensuring the use of latest technological developments in the section of critical care medical equipment and in-vitro diagnostic medical equipment, while creating sensor fabrication and regenerative medicine fabrication facilities.
PSO- 02	Graduating students will be able to develop and apply the appropriate techniques and modern engineering tools to solve complex real-life problems by working with a multidisciplinary team and inculcate skills for life-long and self-learning.

Steps followed to assess POs through COs

Following steps are being followed to assess POs through CO's:

Step 1: Relationships between each course's outcomes (CO's) and PO's have been established. Step 2: Quantification of relationnel values between PO's & CO's and their corresponding weights using the scale from 1 (Least relation) to 3 (Very strong relation).

Step 3: Attainment of course outcome (CO's).

Step 4: Attainment of COs for one semester through appropriate rubrics

Based on the attainment of CO for the particular course, the attainments of POs for the same are calculated as mentioned below:

The PO attainment for the subjects is calculated by multiplying the normalized values of each of the PO with the attained CO of the course. The same procedure is carried out for all the courses (Theory courses (T), Laboratory courses (L) and Project (P) etc.) of the M. Tech Medical Devices.

Engineering PG program.

POi Attainment= (sum of Individual POi attainment/ sum of Individual Normalized POi) The overall attainment of the POs for a session is calculated based on the formula: Overall PO Attainment (PO) = 0.5×Theory+0.1×Lab+0.4×Project

Using the above formula overall PO attainment for M.Tech. Medical Devices will be evaluated. Overall attainment will be reviewed to conclude that the assessment tools are systematically in place.

СО/РО	PO1	PO2	PO3	PO4
CO1	V	1	1	√
CO2	√	V	V	√
CO3	√	√	1	
CO4	√	√	1	√

& & BL

Preamble

Biomedical engineering is an interdisciplinary department. Its focus is on creating systems that experimentally and computationally analyze any medical engineering system, uses modern tools such as digital twins, integrative biosensors, AI/ML, Data Science, Additive Manufacturing, biomimetics, smart bio-materials, and information to support medical fraternity with engineering solutions. One of the Institute's core departments, the Department of Biomedical Engineering, was founded in 2003. At the moment, it provides UG, and PhD courses. The Department is continuously improving its facilities in the fields of healthcare integrated AI-ML, Medical Device Design Engineering, Regenerative medicine and biomaterial engineering, biophysics, and biosensor engineering. The Biomedical Engineering Department at NIT Raipur boasts a highly qualified and knowledgeable staff. The Department of Biomedical Engineering not only has strength in the traditional areas of AI-ML in healthcare, Medical Devices, and Regenerative materials and mechanics, use of modern computational tools, but it also supports a number of other disciplines, including Material Science, Computational techniques, and Chemical Sciences.

Details of Master of Technology in Medical Devices

The Department of Biomedical Engineering at the National Institute of Technology (NIT), Raipur is pleased to announce the launch of a comprehensive Master of Technology (M. Tech) program in Medical Devices. This program is being introduced with the goal of advancing knowledge and encouraging innovation in the field of medical devices. Students will be provided with a comprehensive understanding of theoretical underpinnings, practical applications, and cutting-edge innovations in the area through the completion of this program, which is designed to meet the requirements of industry 4.0 and the present needs of the industry.

4

A

& Dr

Course Structure and Detailed Curriculum

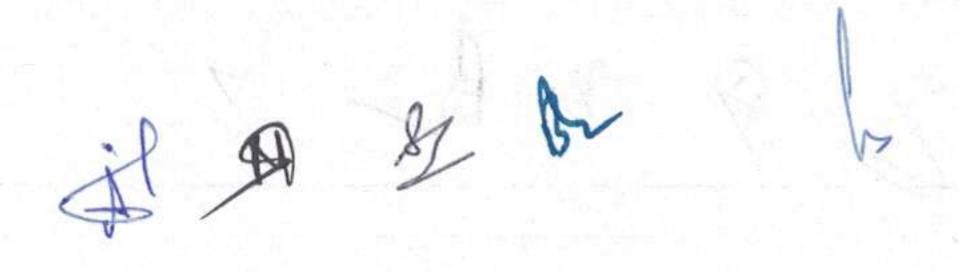
	Semester wise Credit Distribution						
Semester	I	П	Ш	IV	Total		
Credits	2	2	20	20	80		

M.Tech (Medical Devices)

SEMESTER I

CODE		SUBJECT	L	Т	P	C
	Program Core (03)			1	0	3
BM311101BM	Regulatory and Quality Compliance of Critical care and IVD Instruments			1	0	3
BM311102BM	Critical Care and	IVD Instrumentation	3	1	0	3
BM311103BM	Advanced fabrication processes in medical devices			1	0	3
	2 Elec	3	1	0	3	
BM311201BM BM311202BM BM311203BM	List of Elective - I Sem I	Foundation of human biology for no Physiological control system in me Medical Imaging system				
BM311204BM BM311205BM BM311206BM	List of Elective -	Electrical Safety of Patients Fluidics in Medical Devices: Diagr Principles Mathematical modeling in medical				
BM311401BM	Medical Device for medical equip	Lab 1: Quality testing procedure ment	0	0	3	2
BM311402BM	Medical Device Lab 2: Fabrication Methods of Medical Device			0	3	2
BM311403BM	Seminar and Re Training	port Writing / Industrial	0	0	1	1
Total Credit				2	0	

& Br


SEMESTER II

		SEMESTER II			a selfaliya.	
CODE	SUBJECT			T	P	C
	<u>P</u>	rogram Core (03)				
BM312101BM	Basics of Biosenson	rs and Bioelectronics	3	1	0	3
BM312102BM	Tissue Engineering	. 3	1	0	3	
BM312103BM IoT and AI-ML in medical devices			3	1	0	3
	2 Electives are offered in Sem II			1	0	3
BM312201BM BM312202BM	List of Elective-III Bioelectricity Sem II Design, Fabrication, and Testing			al Devic	es and In	nplant
BM312203BM BM312204BM BM312205BM	List of Elective-IV Sem II	Characterization of Medical Device Sterilization Techniques for Medical Drug Delivery system		ces		
BM312401BM	Medical Device Lab 4: Biosensor and Bioelectronics			0	3	2
BM312402BM	Medical Device Lab Device Interaction	5: Tissue Engineering and	0	0	3	2
BM312403BM	Seminar and Report	Writing / Industrial Training	0	0	3	1

SEMESTER III

Total Credits

CODE	SU	UBJECT	L	Т	P	C		
	Hands on Training taken)	4	0	8	8			
BM313301BM								
BM313302BM		ECG and Bedside Monitor System Defibrillator and Heart Lung Machine Ventilator and Anesthesia Machine Hemodialyzer and Endoscope						
BM313303BM								
BM313304BM	Seminar and Report	Single and Multi-Channel So	emi auto			yzer		
	TA / HARPY DO CY / I O O TO DO WOOD	Eull Auto Diochomictor A	malronau	J A	DI-	.10		
BM313305BM	Writing (Technical White Paper) /	Full Auto Biochemistry A Analyzer		and Arte	erial Blo	od Ga		
		The state of the s						
BM313305BM BM313306BM BM313307BM	White Paper) /	Analyzer ELISA and PCR Instrument						
BM313306BM	White Paper) /	Analyzer ELISA and PCR Instrument						
BM313306BM BM313307BM	White Paper) /	Analyzer ELISA and PCR Instrument Blood Cell Count Analyzer						

SEMESTER IV

	Total Credits			erathili	20
BM314501B	M.Tech Project	0	0	40	20
CODE	SUBJECT	L	T	P	С

& B B

Semester wise learning outcome:

Semester I:

First semester the course covers practical applications of regulatory and quality compliances of medical devices, helping students comprehend and solve complex engineering challenges in designing. In the course of the foundation of human biology for medical devices, students will be able to develop critical thinking and correlation of medical devices while integrating them as extracorporeal systems / parts of the human system. Mathematical models shall be extensively used in this semester for developing models of medical devices parametric characterization, as well as for modeling biological control systems for integrating and synchronizing with medical devices. Advanced fabrication processes shall also be elaborated for developing different types of biosensors for integrating with medical devices. Electives offered in this semester are going to make the foundation of either critical care instrumentation, or fluidics instrumentations in medical devices. Three hands-on labs will cover mathematical modeling of medical devices, quality testing procedures for medical devices, and illustration of fabrication processes of medical devices. This course is crucial to the program since it develops students' professional and interpersonal skills. This course integrates mathematical topics with computational tools to prepare for medical devices expertise.

Semester II:

Biosensor and bioelectronics of medical devices will be taught this semester. Medical Devices M. Tech disciplines are chosen for their interdisciplinary teaching and field relevance. Courses in tissue engineering and device interaction, bioelectricity shall be taught, while emphasizing the integration of medical devices with the human body. In this semester, IoT and AI-ML integration to medical devices shall also be elaborated. It will also be associated with an integrated laboratory session. Data-driven computational simulations, optimization, and decision-making are growing. Electives include electrical safety of patients and diagnostic and IVD devices. Three Engineering Labs: biosensor and bioelectronics lab, tissue engineering and device interaction lab, and AI and ML in medical device lab. This semester shall also consist of industrial training at the end of the semester. This internship lets students correlate their coursework with industrial scenarios, and shall innovate them to draw better engineering solutions to medical device designing. Fundamentals, specialization, and cutting-edge technology make the Medical Device M. Tech course noteworthy. Industrial needs are satisfied by teaching regulatory affairs, quality controls, and device design of medical devices widely and allowing students to specialize in electives and labs.

Semester III:

A variety of specialist electives hands on training sessions are available to students, such as training on ECG and Bedside monitor machine, Defibrillator and heart lung machine, ventilator and anesthesia machine, hemodialyzer and endoscope machine, single and multi-channel semi -auto and full auto biochemistry analyzer machine, arterial blood gas analyzer machine, ELISA and PCR machine, and Blood cell count analyzer machine. Students can gain practical experience in machine handling, troubleshooting, components observation and understanding, and analysis of the results / performance of characteristic curves of various parameters derived from the machine with respect to variation in testing point voltages and currents; and correlated to other fluidic and optical parameters. Students shall complete an extensive project in the last semester, where they put their medical device designing knowledge to use by solving real-world problems.

Semester IV:

During the last semester, students get the opportunity to showcase their expertise in medical devices by

doing a comprehensive and original research project. This Master of Technology program in

Medical Devices is designed to give students a well-rounded education in the subject by covering both the fundamentals and the most recent developments in the area. We strive to graduate students who can make significant contributions to Medical Device innovation through innovative research, technological advancements, and practical applications in industry.

Feasibility and Applicability:

The M. Tech in Medical Devices uniquely emphasizes practical applications, providing hands-on experience in solving complex engineering challenges related to medical device design. Its applicability is strengthened by seamlessly integrating device design principles, aligning with contemporary trends, and employing an interdisciplinary approach that addresses a broad range of engineering problems. The program's industry relevance is further highlighted by its focus on device designing integration, offering specialized electives and practical components with live medical devices from the sector of therapeutic and IVD medical devices, ensuring graduates are well-equipped for real-world applications.

Practical Applications: The course covers practical applications of medical device regulatory affairs, providing students with hands-on experience in solving complex engineering challenges.

AI Integration: Incorporation of AI principles, including probability and statistics, enhances the course's feasibility by aligning it with contemporary technology trends.

Interdisciplinary Approach: The interdisciplinary teaching approach, combining computational mechanics with AI and ML, makes the course feasible for addressing diverse engineering problems. **Sensor development:** The integration of AI and ML in computational sensor development addresses real-world engineering problems creatively, preparing students for data-driven simulations, optimization, and decision-making.

Specialized Electives: Electives from the domain of critical care devices and IVD devices shall enhance applicability by allowing students to specialize in areas aligned with industry demands.

Hands on Training Sessions: The inclusion of courses on hands-on training sessions of medical devices at factory setup shall build confidence among students, as well as make them comfortable to recruit medical devices to work on real time medical device designing problems.

Job Perspectives:

Graduates with an M. Tech in Medical Devices are well-positioned for diverse and high-demand roles across industries. In sectors like data analytics, pharmaceutics, IVD associations, Medical Device manufacturing associations, device quality control and regulatory issues, BIS in medical devices, Patent officers in medical devices, they can contribute to optimizing designs, analyzing results, evolving modification in innovative designs, and utilizing AI for data-driven decision-making. Specialized expertise in areas such as biofluid dynamics and flows modeling opens avenues in healthcare sectors. Additionally, proficiency in high-performance computing gained during the program equips graduates for roles in research institutions and technology-driven companies. The unique blend of medical device designing and AI skills prepares them for careers at the forefront of technological advancements, addressing complex challenges in specific industries with a strong foundation in both theory and practical application.

Versatility: Graduates can explore various career paths due to the program's versatility, covering areas such

as optimization engineering, biosensor development, device development, and fluidics in IVD. **Industry Relevance:** Addressing industrial needs through broad coverage of medical devices and specialization in electives ensures graduates are equipped with skills relevant to industry demands.

Project-Based Learning: Practical experience gained through labs, minor projects, and extensive projects in each semester enhances graduates' readiness for industry roles.

Innovation and Research: The focus on a comprehensive and original research project in the final semester prepares graduates to contribute to innovative advancements in medical devices, fostering research-oriented job opportunities.

Overall, the M. Tech in Medical Devices course appears feasible, applicable to real-world engineering challenges, and promising in terms of job perspectives, aligning well with industry needs and technological advancements.

Admission Criterion

The admission criterion for the course will be identical to that of the present PG program being conducted at the Department and will be in accordance with the rules of the Institute and CCMT. The eligibility is as follows:

B. Tech in Biomedical Engineering and related branches, Mechanical Engineering, Chemical Engineering, Material Science Engineering, Electrical Engineering, Electronics and Telecommunication Engineering, Bachelor of Pharmacy, MBBS, BDS and related GATE examination qualifications will be eligible for admission.

Number of seats: 30 (Reservation as per Government norms)

Resources

Manpower:

Presently the Department has a faculty strength of 10 regular faculties. All these faculties belong to the proposed stream and in future the strength is going to be increased.

Infrastructure, Labs and Equipment:

The lab requisition for the proposed course is evaluated on the basis of the scheme offered above. Requisite number of **classrooms** is available with the department. In addition to that, infrastructural support is also committed by the Ministry of Pharmaceuticals and Fertilizers.

A B Br

Course Code: BM311101BM					ory and Qua	lity Compliance of ruments	Credits (L-T-P- Cr): 3-1-0-3		
Pre-req	uisites: NIL	A Section of the second							
	Cou	rse Outco	me						
S.No.	Outcomes						PO Level		
CO1	Analyze the regulatory environment for medical devices in India and globally.								
CO2	Apply knowledge of the Indian Medical Device Rules (2017) for the classification and registration of medical devices.								
CO3	Evaluate the risk management process in the development and manufacturing of medical devices.								
CO4	Apply ISO 134	485 and GN	MP guidelines	in the design	and manufactur	re of medical devices.	PO1		
CO5	Apply the step	s in the reg	gulatory appro	val process fo	r medical devi	ces in India	PO2		
CO6	Evaluate clini	Evaluate clinical trial protocols for medical device approval and conformity assessment.							
CO7	Evaluate the e	Evaluate the ethical, legal, and social challenges in the regulation of medical devices.							
CO8	Create strategies to address emerging compliance challenges in the medical device industry.								
	Art	ticulation	Matrix: (CO-	PO-PSO Ma	pping)				
СО	PO1	PO2	PO3	PO4	PSO 1	PSO2			
CO1	2	1	-	1	3	3			
CO2	3	3	2	2	3	3			
CO3	3	3	3	3	3	3			
CO4	2	3	2	1	3	3			
CO5	2	1	-	1	3	3			
CO6	3	3	2	2	3	3			
CO7	3	3	3	3	3	3			
CO8	2	3	2	1	3	3			
Unit	Syllabus								

& St BL

Unit 1	 Introduction to Medical Device Regulations and Standards Topics Covered: Introduction to Medical Devices: Types, classifications, and categories of medical devices. Regulatory Bodies in India: CDSCO (Central Drugs Standard Control Organization), National Pharmaceutical Pricing Authority (NPPA), and their roles. Overview of Indian Medical Device Rules, 2017: Classification, registration, and regulatory requirements for medical devices in India. Global Regulatory Landscape: FDA (USA), CE (Europe), TGA (Australia), and WHO guidelines ISO 13485: Quality management systems for medical devices.
Unit 2	 Quality Management Systems and Risk Management Topics Covered: ISO 13485:2016: Quality management system requirements for medical devices. Risk Management in Medical Devices: ISO 14971 for risk assessment and management in medical devices. Good Manufacturing Practices (GMP): Regulations and guidelines for medical devices manufacturing in India. Clinical Evaluation and Validation: Requirements for In Vitro Diagnostic (IVD) and Critical Care Devices. Post-market Surveillance and Vigilance: Regulatory requirements for market monitoring and reporting adverse events.
Unit 3	 Regulatory Approval and Conformity Assessment Topics Regulatory Approval Process in India: Application for medical device registration importation, and market authorization. Clinical Trials and Ethical Considerations: Requirements and ethical considerations for clinical trials in medical device approval. Conformity Assessment: CE marking, US FDA approval, and their role in product certification. Device Labeling and Packaging Compliance: Regulatory requirements for medical device labeling in India. Inspection and Audits: Role of CDSCO in inspections and audits.
Unit 4	 Compliance Challenges and Future of Medical Device Regulations Topics Covered: Emerging Technologies in Medical Devices: Impact of AI, robotics, and digital health technologies on regulations. Challenges in Compliance: Issues related to counterfeit medical devices, import restrictions, and evolving standards. Global Harmonization of Medical Device Regulations: Trends towards international regulatory standards and their implications for India. Ethical, Legal, and Social Aspects: Ethical concerns in medical device approvals and patient safety. Case Studies: Analyzing regulatory issues and compliance failures in the medical device industry.

- 1. MEDICAL DEVICE REGULATIONS: Global overview and guiding principles by WHO
- 2. "Indian Medical Device Regulations" by CDSCO Guidelines. CDSCO Medical Device Rules, 2017
- "A Practical Field Guide for ISO 13485:2016: Medical Devices Quality Management Systems Requirements for Regulatory Purposes" by Erik V. Myhrberg, Joseph Raciti, Brandon L. Myhrberg.
- "Safety Risk Management for Medical Devices" by European Institute of Innovation and Tec Elahi, Bijan, International System Safety Society (ISSS).
- 5. "Fundamentals of Medical Device Regulations" by Gert Bos and Jocelyn Jennings
- "Medical Device Guidelines and Regulations Handbook" by Nandakumar Palani, Prakash Srinivasan Timiri Shanmugam, Pugazhenthan Thangaraju, Thamizharasan Sampath

JA & Br

Course Code: BM311102BM			Subj	Subject Name: Critical Care and IVD Instrumentation					
Pre-requ	isites: NIL								
			Course Out	come					
S.No.		Outcomes						PO Level	
CO1	Students	Students should able to understand and realize the need for critical care medical devices							
CO2	A Louisian	Should be able to apply the basic knowledge of engineering to know the application and utility of different recording and therapeutic devices in the medical sector.							
CO3	Student	should be a	able to desig	n and develop	the prototyp	e of critical car	e medical devices	PO3	
CO4		Create strategies to address emerging critical care instruments and their challenges in the medical device industry.						PO4	
		Articul	ation Matri	x: (CO-PO-I	PSO Mapping	g)			
СО	PO1	PO2	PO3	PO4	PSO 1	PSO2			
CO1	2	1		1	3	3			
CO2	3	3	2	2	3	3			
CO3	3	3	3	3	3	3			
CO4	2	3	2	1	3	3			
Unit	Sy	llabus							
Unit 1	Vector Method Cardia analyze	cardiograph d of monitor c pacemaken, DC des	ny, Phonoca oring fetal h er, implanta fibrillator, I	ardiograph, Eneart rate, months ble pacemake mplantable of	nitoring laborers, recent de	nstrumentation r activity, Puls evelopment in Types of impla	antable defibrillator, Pa	ardiotocography scular oximeter , pacing syster	
Unit 2	Cardiac pacemaker, implantable pacemakers, recent development in implantable pacemaker, analyzer, DC defibrillator, Implantable defibrillator, Types of implantable defibrillator, Pacedefibrillator, defibrillator analyzer, left ventricular assist device (LVAD) Unit 2 Principles and instrumentation of CCU based instruments Instrumentation in CCU: Anesthesia machine, heart lung machine, capnograph, oxygenators, LICU related devices, bioanalytical and biocatalytical instruments; Mechanics of respiration a function measurement, Spirometry, Pneumotachometers, Measurement of lung volume, Pulm analyzers, Respiratory gas analyzer, Artificial ventilation, Humidifiers, Nebulizers, and Aspirator the kidneys and artificial kidney, Dialyzers, Principle and membranes for hemodialyzers, machine, Home (portable) kidney machines, The stone disease problem and shock wave, Lithocare units and advanced monitoring systems: Bedside Monitors, Patient monitoring circuits						and Pulmonar monary function tors; Function of tors; Hemodialyze otriptor. Specia		

& & B

Unit 3	Principle and instrumentation of semi and full auto biochemistry analyzer,
166	Arterial blood gas analyzer: physical principle of analytes detection, block diagrams, components integration
	electrical communication, optical filtering and signal conditioning, signal to noise ratio enhancement procedures
	Principle and instrumentation of ELISA and PCR instruments: physic-chemical principles, blocks of fluidics
	actions, ELISA biochemical reaction kinematics, amplification techniques, PCR biochemistry, instrumentation
	filtering techniques, amplification and signal conditioning techniques
Unit 4	Unit 4: Principle and instrumentation of Blood Cell Count Analyzer and Mass Spectroscopy instruments:
	Impedance techniques, optical techniques of blood cell counting, different assays, physical principles,
	implementing instrumentation dynamics; mass spectroscopy instruments instrumentation principles. Principle
	and instrumentation of Point of care devices: concepts, principles, architecture, sensor integration, sensitivity and
	specificity evaluation.

Biomedical Instrumentation, R S Khandpur Carr and Brown Introduction to Biomedical Equipment Technology, 4th Edition, Pearson

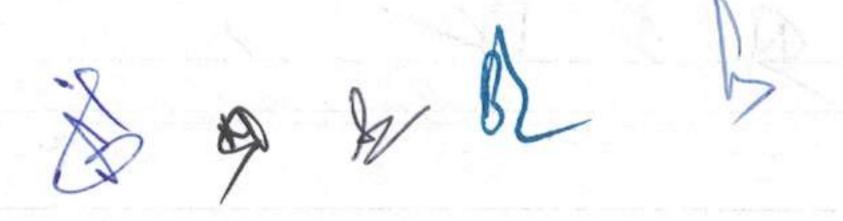
		e Code: 1103BM		The state of the s	Name: Advan- cesses in medic	ced fabrication al devices		edits (L-T-P	
Pre-re	equisites:	NIL							
				Course	Outcome				
S.No.	Oı	utcomes				Was and a Figure 1	Historia (PO Level	
CO1	Studer	Students should be able to understand the workflow for personalized medical devices							
CO2	Studer	Students should be able to identify and apply the concepts of additive manufacturing in developing medical devices							
CO3	Studer and na	Students should be able to analyze and evaluate the physics and the technology behind the micro and nano fabrication methods for developing medical devices.							
CO4		nts should be ent medical o		y and create di	ifferent bio fabri	cation processes for o	designing	PO4	
		Articul	ation Matrix:	(CO-PO-PSC	Mapping)				
CO	PO1	PO2	PO3	PO4	PSO 1	PSO2			
COI	2	1	-	1	3	3			
CO2	3	3	2	2	3	3			
CO3	3	3	3	3	3	3			
CO4	2	3	2	1	3	3			
Unit		Syllab	ous						

Al A st br

Unit 1	Introduction to personalized medical devices Need for Medical Device Personalization:
Locality	Introduction to Personalization of Medical devices, Advantages of personalized medical devices. • In-silico testing of medical devices
	Introduction and importance to in-silico testing, Importance and application for in-silico testing.
	 In-vivo and ex-vivo testing of medical devices
	Importance and comparison of the in-vivo and ex-vivo testing of medical devices, Static loading, Dynamic loading, Impact - Charpy and Izod tests, Thermogravimetric analysis, Differential Scanning Calorimetry, Thermomechanical analysis.
Unit 2	Additive manufacturing technology and rapid form copying for enhancing the development process of bio devices
	 Introduction to Additive Manufacturing and Rapid Product Development: Design optimization, Rapid prototyping and manufacturing technologies, Di Matteo's process, Baese's process.
	Additive Manufacturing processes with impact on biomedical field:
	Overview of various additive manufacturing techniques, Materials used for additive manufacturing - powder, liquid, and solid, Selective laser sintering (SLS), Stereo-lithography, Digital light processing (DLP), Direct laser writing, Fused deposition modeling, Selective Laser Melting, Additive Manufacture of Conventional Biodevices for In Vitro or In Vivo Trials, Biomodels for implantable hard and soft tissue replacement.
Unit 3	Micro and nano manufacturing technologies for biodevices
	Introduction to Micro and Nano Manufacturing Technologies:
	Micromachining, Subtractive Micromachining, Chemical Micromachining, Manufacturing of microporous structure, Micro-replication technologies, thin film deposition technologies, Additive micro-manufacturing. • Subtractive micromachining for biodevices:
	Introduction, Materials used, Process description, milling, drilling, lathing, micromachining using laser, electron beams, ion beams, X -rays.
	Photolithographic Approaches for 2D Biodevices:
	Introduction, Materials used in photolithography, Process description, classifications of various lithography processes, types of photoresists, Physical Vapor deposition, Chemical vapour deposition, solution deposition processes, applications of photolithography process in developing different biomedical devices.
Unit 4	Bio fabrication, and in silicon, Invitro and in-vivo testing of biodevices Introduction to manufacturing of biological systems
	Introduction, layer by layer deposition process, bioprinting technology, fabrication of biomedical scaffolds, Self assembled processes.
	Advancement and challenges linked to Biodevices Advancement and challenges linked to Biodevices
	Introduction, Challenges related to polymers, bio-polymers, ceramics, composites, biomimetic scaffolds, advancement and challenges linked with bio design tools, advancement and challenges related to bio-manufacturing technologies.
	References

Course Code: BM311201BM	Subject Name: Foundation of human biology for medical devices	Credits (L-T-P- Cr): 3-1-0-3
Pre-requisites: NIL		
Course Outcome		

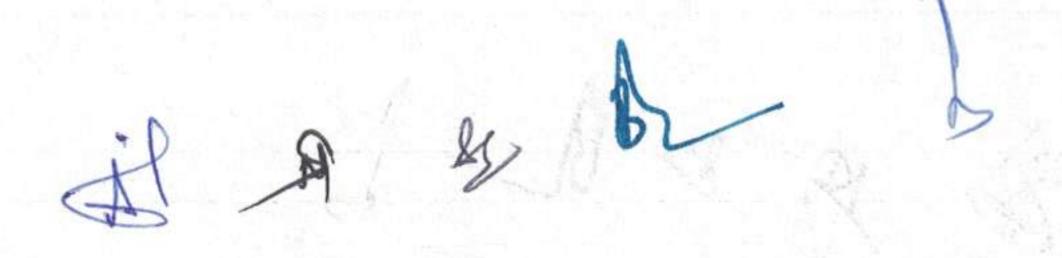
VLSI Technology, S.M. Sze, 1988, New York: McGraw-Hill, ISBN: 978-0070627352


New York, NY

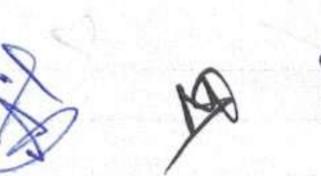
Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices, Andres Diaz Lantana,

DOI: https://doi.org/10.1007/978-1-4614-6789-2, ISBN: 978-1-4614-6788-5, Published: 08 May 2013, Springer

S.No.	Outcomes	PO Level


CO1 Understand the basics of cell and tissue structures in the human body.

CO2	Understand	d the anatomy an	d physiology of o	different organ sys	tems.		PO2
CO3	Apply the	knowledge of ba	sic physiology to	detect pathologica	al conditions.		PO2
CO4	Evaluate h	ow the brain con	trols different org	gans and their fund	ctions.		PO3
CO5	Identify the done.	e basic physiolog	gy of the urinary	system and how di	alysis can be dete	ected and	PO4
A	rticulation M	atrix: (CO-PO-l	PSO Mapping)				
СО	PO1	PO2	PO3	PO4	PSO1	PSO2	
CO1	2	1	-	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
CO4	2	3	2	1	3	3	100
CO5	2	1	-	1	3	3	
Unit		Syllabus					
Unit 1	Cell and		Γransport system	across cell memb	에 의가에는 사람이 되어 되지 않는 것이 모든 것이다.	ons, Arrangem	ents of cell as
	Cardiovascular and Respiratory system: Anatomy of heart and blood vessels, Characteristics of Heart muscles, Physiology of heart, cardiac cycle, blood pressure, Regulation of blood pressure, Cardiac output and their regulation. Different types of blood vessels and their characteristics. Anatomy of respiratory system, Mechanism of respiration, Exchange of gases, Transport of oxygen and carbon Dioxide, Regulation of respiration rate.						
Unit 2	Anatom cycle, l types o Anatom	blood pressure, I f blood vessels a y of respiratory s	lood vessels, Che Regulation of blood and their characte ystem, Mechanis	aracteristics of He ood pressure, Caro ristics. om of respiration, E	diac output and t	heir regulation	n. Different
Unit 2 Unit 3	Anatom cycle, b types of Anatom carbon	blood pressure, I f blood vessels a y of respiratory s Dioxide, Regula s system:	lood vessels, Che Regulation of blood their characterystem, Mechanistion of respiration of respiration of the characterystem, and the characterystem, Mechanistic the characterystem, and the characterystem, and the characterystem of the charac	aracteristics of He ood pressure, Caro ristics. om of respiration, E	diac output and t	heir regulations, Transport of	n. Different oxygen and


- Human Anatomy and Physiology, Guyton. 14th Edition,
- Principles of Anatomy and Physiology by Gerard J Tortora and Bryan Derrickson, 13th Edition, John Wiley & Sons, Inc. Essentials of Medical Physiology by K Sembulingam, 6th Edition, Jaypee Brothers Medical Publishers

Course Code: BM311202BM		Subject Name: Physiological control system in medical device	Credits (L-T- P-Cr): 3-1-0-3
Pre-requisi			
	Course Outcome		
S.No.	Outcomes		PO Level

CO1	Studen		rol systems and mathematical	PO1				
CO2	Stude	nts should	be able to	develop m	athematical mo	odels for variou	us dynamic systems.	PO1
CO3	Students should be able to analyze the transient and steady-state behavior of control system implemented in medical devices.							PO2
CO4	Stude	nts should	be able to	assess and	ensure the stal	bility of control	l systems.	PO3
CO5	Students should be able to apply modern simulation tools to model, simulate, and design medical control systems							PO4
				Articulati	on Matrix: (C	O-PO-PSO M	lapping)	
СО	PO1	PO2	PO3	PO4	PSO1	PSO2		
CO1	3	1		1	3	3		
CO2	3	3	2	2	3	3		
CO3	3.	3	3	3	3	3		
CO4	3	3	2	3	3	3		
CO5	3	3	2	3	3	3	And the last the appropriate the	
Unit		Syllabus						
Unit 1	Cor Sys gra- elec stuc Tin Tra	ntrol Systems, Feet phs model ctro-mechanies: Regularies responsions insient responsions responsibility respons	m: Terminal dback and ls, Mason' anical system anical system and the lation of Conse of Dynamics of dynamics on Steam of Steam of Conse, Steam of S	nology and feedforwa s gain form ems, Trans ardiac Out amical Systemical system	Basic Structurard mechanism mula, Mathemater functions, put, Regulations, ems: Impulse a sponse, Measu	atical modelling Overview of one of Glucose Ir	between Closed Loop and Open rams, Block diagram reductions of electrical systems, mecha control mechanisms in medical isulin, Thermoregulation, etc. nse of standard first and second ance of the standard first order a	order systems
	dev	ices using	PD, PI a		ntrol systems		teady state error, Analytical des oumps for drug delivery, ventila	
Unit 3	Clo star Cas	sed loop ndard seco scade lead	frequency nd order sy compensa	ystem, Bod	Performance le Plot, Polar P ade lag compe	lot, Nyquist plo	in frequency domain, Frequence ots, Design of compensators using the lag-lead compensation, Soft	g Bode plots -
			Carles Ashirt					

- Khoo M.C.K., 2018. PHYSIOLOGICAL CONTROL SYSTEMS Analysis, Simulation, and Estimation Second Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Franklin G.F., Powell J.D., Emami-Naeini A., Feedback Control of Dynamic Systems, Pearson, Upper Saddle River, New Jersey, 5th edition, 2006.
- 3. Ogata K., Modern Control Engineering, Prentice-Hall of India Pvt Ltd., New Delhi, 3rd edition, 2000.
- 4. Golnaraghi F., Kuo B.C., Automatic Control Systems, Tenth Edition. India: McGraw-Hill Education, 2017.

pa & A

Course Co	de: <u>BM311203BM</u>	Subject	Subject Name: Medical Imaging Systems						
S.No.			Outcomes						
CO1	Students shall unde auger electron proc		ronic transitions in	atoms and associa	ate it with characteris	tic and bremsst	rahlung x-ra		
CO2	Students shall expl	tudents shall explain different x-day based imaging techniques like fluoroscopy, mammography, CT							
CO3		Students shall understand the principle and acquisition modes/parameters of MRI, ultrasound imaging and nuclear imaging techniques							
CO4	Students shall app	raise other ima	ging techniques 1	ike endoscopy, n	nicroscopy, Optical co	oherence tomog	raphy		
СО	PO1	PO2	PO3	PO4	PSO1	PSO2			
CO1	2	1		1	3	3			
CO2	3	3	2	2	3	3			
CO3	3	3	3	3	3	3			
CO4	2	3	2		2	2	Ille and a later and		

Unit	Syllabus
Unit 1	Structure of atom, Characteristic emission, interaction of radiation with material, production of x-rays, radiography, fluoroscopy, CT
Unit 2	MRI – physics & instrumentation, Ultrasound Imaging – physics & instrumentation
Unit 3	Nuclear Imaging Molecular Imaging with Positron Émission Tomography, Radionuclide Production and Radiopharmaceuticals, Cardiac Imaging, Musculoskeletal Imaging,
Unit 4	Other imaging techniques – endoscopy, microscopy, Optical coherence Tomography, System Theory & Image processing
	References

- Andreas Maier Stefan Steidl, Vincent Christlein, Joachim Hornegger, Medical Imaging Systems, An Introductory Guide, Springer Open 2018
- Ramond M Reilly, Medical Imaging for Health Professionals, Technologies & Clinical Applications, 2019 John Wiley & Sons, Inc.
- 3. Ehsan Samei, Donal J Peck (2019). Hendee's Physics of Medical Imaging, 5th Edition, Wiley Blackwell

Al De Br

Course Code: BM311204BM

Subject Name: Fluidics in Medical Devices: Diagnosis and IVD Principles

Credits (L-T-P-Cr): 3-1-0-3

Pre-requisites: NIL

	Course Outcome	
S.No.	Outcomes	PO Level
CO1	Students shall be able employ instrumentation fundamentals in IVD device constructions.	PO1
CO2	Students shall be able to design and develop prototypes of IVD medical devices.	PO2
CO3	Students shall be able to analyze the instrumentation of semi and full auto biochemistry analyzer and arterial blood gas analyzer	PO2
CO4	Students shall be able to examine the principle and instrumentation of ELISA and PCR instruments	PO1
CO5	Students shall be able to determine the testing points of blood cell count analyzer and mass spectroscopy instruments	PO2
CO6	Students shall be able to design prototype of point of care devices	PO3
CO7	Students shall be able to correlate the fluidics principles for IVD device development	PO3
CO8	Students shall be able to categorize different fabrication techniques used for fluidic bed development for IVD devices	PO4
CO9	Students shall be able to determine efficacy of different molecular techniques on IVD devices	PO3
CO10	Students shall be able to develop prototype for cell-based chip for biotechnology application	PO4

			Articul	ation Mat	rix: (CO-PO-	PSO Mapping	
СО	PO1	PO2	PO3	PO4	PSO 1	PSO2	
CO1	2	1	-	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
CO4	2	3	2	1	3	3	
CO5	2	1		1	3	3	
CO6	3	3	2	2	3	3	
CO7	3	3	3	3	3	3	
CO8	2	3	2	1	3	3	
CO9	3	3	2	2	3	3	
CO10	3	3	3	3	3	3_ 3_	

M.

& B

	Employ safety analysis methodologies such as hazard analysis, safe switching of power systems, flash hazard calculations, and measurement techniques to mitigate risks associated with electrical faults.	
--	---	--

Articulation Matrix: (CO-PO-PSO Mapping) PSO2 PSO₁ PO4 PO3 PO2 PO1 CO 3 3 2 CO1 3 3 2 2 3 3 CO2 3 3 3 3 3 CO3 3 2 2 CO4 3 3 2 2 3 3 CO5

Course Code: BM311206BM	Subject Name: Mathematical modeling in medical device perspective	Credits (L-T-P-Cr) : 3-1- 0-3
-------------------------	---	----------------------------------

Pre-requisites: NIL

	Course Outcome					
S.No.	Outcomes	PO Leve				
CO1	Understand the fundamentals of CAD/CAM and imaging tools used in medical device design	PO1				
CO2	Apply mathematical and computational models for the simulation and analysis of biomedical systems	PO2				
CO3	Perform geometric and finite element modeling for the design of biomedical implants and devices.	PO3				
CO4	Implement manufacturing techniques, including CNC machining and additive manufacturing, for medical devices	PO3				
CO5	Integrate information systems and computational techniques for optimized medical device production.	PO4				

			Articulation	on Matrix	: (CO-PO-PSO	O Mapping)	
co	PO1	PO2	PO3	PO4	PSO 1	PSO2	
CO1	2	-	-	1	3	3	
CO2	3	2		2	3	3	
CO3	3	3	3	3	3	3	
CO4	3	2	2		3	3	
CO5	2	-		1	3	3	
Unit		Syllat	ous				

AH.

A

& B

Unit 1	Fundamentals of CAD/CAM in Medical Device Design: Introduction to CAD/CAM Hardware & Software, basic principles and applications. Imaging tools for promoting design personalization: Medical Image capturing systems, Introduction to semi-automatic image processing algorithms and 3D modeling and analysis to perform simulations and development of medical devices.
Unit 2	Design of Industrial Products: Introduction to Modelling System, Geometric Modeling: surface and solid modeling, CAD Standards, Introduction to Drafting System, Implementation of Finite Element Analysis in Medical Devices.
Unit 3	Manufacturing Aspects of medical devices: Introduction to Computer Numerical Control, CNC Hardware Basics, CNC tooling, Machine Tools and Control Systems. Precision Machining and Material Modeling: Biocompatible materials, sterilization, and regulatory aspects.
Unit 4	Role of Information Systems: Information Requirements of Manufacturing, Group Technology and Compute Aided Process Planning, Production Planning and Control

1. Rao, P. N. (2004). CAD/CAM: principles and applications.

2. Groover, M., & Zimmers, E. W. J. R. (1983). CAD/CAM: computer-aided design and manufacturing. Pearson Education.

3.Miller, K. (2010). Computational biomechanics for medicine. P. M. Nielsen (Ed.). New York: Springer.

4. Smid, P. (2003). CNC programming handbook: a comprehensive guide to practical CNC programming. Industrial Press Inc..

Gilchrist, A. (2016). Middleware industrial internet of things platforms. In Industry 4.0: The Industrial Internet of Things (pp. 153-160). Berkeley, CA: Après.

Course Code	e: BM31	1401BM		Subject N	Credits (L-T-P Cr): 0-0-3-2		
Pre-rec	quisites:	NIL					
				Cou	rse Outcome		
S.No.		Oı		PO Level			
CO1	Eva	aluate Mec	ical Device Components	PO1			
CO2	An	alyze Perfo		PO2			
CO3	De	sign and In	rocedures	PO3			
CO4	Inte	egrate Reg	Optimization	PO4			
			Art	iculation N	Matrix: (CO-PC	PSO Mapping)	
СО	PO1	PO2	PO3	PO4	PSO 1	PSO2	
CO1	2	1	-	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3 3 3 3					3	
CO4	2	3	2	1	3	3	
Experiments					Experi	ment Title	

E1

A N Br

Quality testing for mechanical properties of the device components

E2	Quality testing of sensitivity testing of the output response of device components
E3	Quality testing of output resolution of medical devices (IVD and CCD)
E4	Quality testing of leakage current from medical devices
E5	Quality testing of Line Isolation Monitoring system of medical devices
E6	Quality testing of specificity of IVD devices
E7	Quality testing of device design optimization

Course Code: BM311402BM	Subject Name: Fabrication Methods of Medical Device Lab	Credits (L-T-P-Cr): 0-0-3-2

Pre-requisites: NIL

	Course Outcome	
S.No.	Outcomes	PO Level
CO1	Students are able to understand the basics of fabrication tools used for developing medical devices.	PO1
CO2	Students can apply and develop solutions based on structuring different medical devices using fabrication tools.	PO2
CO3	Students can also analyze and evaluate the problems and challenges faced during fabricating the medical devices.	PO3
CO4	Students should be able to intervene and hypothesize different future advanced medical devices using bio fabrication processes	PO4

Articulation Matrix: (CO-PO-PSO Mapping)

CC)	PO1	PO2	PO3	PO4	PSO 1	PSO2
(CO1	2 .	1	7 - 7	1	3	3
(CO2	3	3	2	2	3	3
(CO3	3	3	3	3	3	3
(CO4	2	3	2	1	3	3

Experiments	Experiment Title							
E1	3D printing technique demonstration - FDM and SLA							
E2	Demonstration of polymeric extruders for filament synthesis							
E3	Metal 3D printing Demonstration							
E4	Lithography based fabrication of fluidic system for IVD devices							
E5	Laser engraver technique demonstration for medical device parts fabrication							
E6	Fabricating medical device parts using laser engraver							

E.P

D

& Br

E7	Con	ducive ink	-based pri	nting meth	od demonstra	tion for mid	cro-electronic circuit printing	of medical devices			
E8	3 ax	is CNC M	illing	ly saigi			The state of the second				
Course Co	de: BM3	12101BN	1	Subject	Name: Basic	cs of Bios	ensors and Bioelectronics	Credits (L-T-P- Cr): 3-1-0-3			
Pre-r	equisites:	NIL									
					Course Outco	me					
S.No.		(Outcomes					PO Leve			
CO1	Students will be able to know about different biological components for biosensor design.										
CO2	Stude	Students will be able to understand about different transducers used on biosensors									
CO3	Stude	Students will be able to understand and design the operational amplifiers for signal processing									
CO4	Stude	Students will be able to get basic idea of filter design and operations PO3									
CO5	Stuc	Students will be able to understand and create sensor workflow and processing									
			A	rticulatio	n Matrix: (C	O-PO-PSC	Mapping)				
СО	PO1	PO2	PO3	PO4	PSO 1	PSO	2				
CO1	2	1		1	3	3					
CO2	3	3	2	2	3	3	es les extractors reco				
CO3	3	3	3	3	3	3					
CO4	2	3	2	1	3	3					
CO5	3	3	2	2	3	3					
Unit			Syllabu	s							
Unit 1	Biose affini	Biosensor architecture and principles for analytical and critical care parameters Biosensors- various components of biosensors, Advantages and limitations, Biocatalysis based biosensors, Bio affinity-based biosensors & Microorganisms based biosensors, biologically active material and analyte. Types of membranes used in biosensor constructions									
Unit 2	Vario Capa Princ Volta	ous types of citive typ iples and	of transduce; Piezoe applicati	cers: Poter lectric tra ons - Ca	ansducers; The dorimetric, O	rain gauges ermistors, optical, Po	s, Bridge circuits, Variable in Thermocouple, Resistive T tentiometry, Amperometry, tric, Impedimetric, Chemilu	emperature detector Chronoamperometry			
Unit 3	Opera	ational am	nplifiers: summer,	Basic Dif		olifiers, Ide	eal and practical considerati ion amplifiers, Integrator, dif				
Unit 4	Signa	d acquisiti	on compo	nents, Ny	osensor application of the original of the ori	fundament	als of FFT, Design of Filters	by passive and active			

B

- 1. Biosensors and its instrumentation, Carr and Brown, 4th Edition, Pearson
- 2. Electronic Circuits Part-II by U A Bakshi and A P Godse
- 3. Carr and Brown- Introduction to Biomedical Equipment Technology, 4th Edition, Pearson
- 4. Brian R Eggins Biosensors an Introduction, First edition, John Wiley & Sons Publishers, 1996
- 5. Loic J Blum, Pierre R Coulet Biosensors Principles and Applications, First edition, Marcel Dekker, Inc, 1991.

Course Code: BM31210BM

Subject Name: Tissue Engineering and Device Interaction

Credits (L-T-P-Cr): 3-1-0-3

Pre-requisites: NIL

Course Outcome								
S.No.	Outcomes							
CO1	Students shall be able to evaluate cellular morphology in degenerative tissues	PO1						
CO2	Students shall be able to classify different grades of degeneration in human tissues	PO1						
CO3	Students shall be able to develop various kinds of scaffold at multi-scalar domain	PO2						
CO4	Students shall be able to evaluate the properties of scaffold based on the parametric sweep of scaffold development strategies	PO2						
CO5	Students shall be able to develop the design of tissue engineering bioreactor	PO3						
CO6	Students shall be able to model transport phenomena of culture fluid in designed bioreactors	PO3						
CO7	Students shall be able to evaluate the interaction between host tissues and implanted scaffolds	PO4						
CO8	Students shall be able to comprehensively analyse the regulatory issues related to case specific scaffold implantation strategies.	PO4						

Articulation Matrix: (CO-PO-PSO Mapping)

CO	PO1	PO2	PO3	PO4	PSO 1	PSO2
COI	2	1		1	3	3
CO2	3	3	2	2	3	3
CO3	3	3	3	3	3	3
CO4	2	3	2	1	3	3
CO5	3	3	2	2	3	3
CO6	3	3	3	3	3	3
CO7	2	3	2	1	3	3
CO8	3	3	2	2	3	3

Uni	Syllabus	
4		
THE RESERVE OF THE PARTY OF THE		

A & B

Unit 1	Scaffold fabrication and characterization technique Classification of scaffolds, principles of various scaffold fabrication techniques, modeling of scaffold fabrication techniques, classification of characterization techniques of scaffolds, its characterization, evaluation report analysis, cell scaffold interaction study, influence of scaffold topographical features on cellular morphology
Unit 2	Bioreactor designing for various types of tissue constructs Fundamentals of tissue engineering bioreactors, forces associated with bioreactors, bioreactor instrumentation, design approach of bioreactors, classification of tissue engineering bioreactors, bioreactors for coplanar tissue construct, tubular construct, 3D solid tubular construct, 3D non-conventional structure construct, microenvironment of bioreactors and their analysis, biosensors integration bioreactors
Unit 3	Basic of nano-biomedicine Error-tolerant digital microfluidic lab on chip: control-path design and rollback-recovery mechanism, error-propagation estimates for checkpoint insertion, control path synthesis, evaluation of protein assay; Ion pore formation in membranes: protein-lined ion channel-lipid bilayer coupling, analytical drug-induced lipid-lined ion channel formation, membrane permeabilization by defects with possible non channel effects, nano particle transport to cellular interior through membrane permeabilization
Unit 4	Regenerative device interaction with host tissues and its regulatory issues Microenvironmental evaluation of interaction between scaffold and host tissues, boundary conditions of host tissue - scaffold interaction, characterization of this interaction, regulatory issues related to scaffold materials, its sight of insertion, process of manipulators, and targeted degenerated morbidities

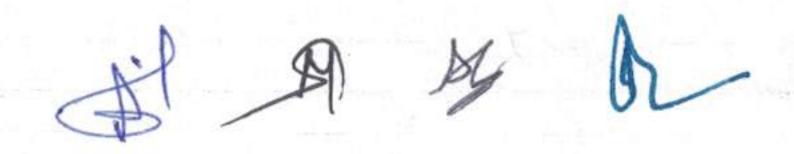
Principles of tissue engineering and applications, Joseph Bronzino Molecular, Cellular, and tissue Engineering. Bronzino, Peterson; Second Edition. CRC Press. Handbook of Nanoscience, Engineering and Technology. Goddard, Brenner, Lyshevski, Iafrate. Third Edition, CRC Press.

Course Code: BM312103BM	Subject Name: IoT and AI-ML in medical devices	Credits (L-T-P-
		Cr): 3-1-0-3

Pre-requisites: NIL

Course Outcome						
S.No.	Outcomes					
CO1	Students will be able to understand the fundamental concepts of IoT, AI, and ML and their applications in medical devices.	PO1				
CO2	Students will be able to apply IoT-enabled biosensors and bio-signal acquisition systems integrated with AI-ML algorithms for healthcare monitoring.	PO2				
CO3	Students will be able to analyze and evaluate IoT architectures and AI models for their effectiveness, scalability, and limitations in healthcare applications.	PO3				
CO4	Students will be able to create and implement IoT-based intelligent medical devices, addressing ethical and regulatory considerations in healthcare innovation.	PO4				

Articulation Matrix: (CO-PO-PSO Mapping)									
	PSO2	PSO 1	PO4	PO3			CO		
	3	3	1	-	1	2	CO1		
	3	3	2	2	3	3	CO2		
	3	3	3	3	3	3	CO3		


CO4	2	3	2	1	3	3				
Unit	Syllabus									
Unit 1	Sup deci diag	Introduction to AI and ML: Basics of Artificial Intelligence: Definition, history, applications in healthcare, and medical devices, Feature extraction and optimization of network, Machine Learning Fundamentals: Supervised, unsupervised, and reinforcement learning; overview of key ML algorithms (e.g., linear regression, decision trees, and k-means clustering), AI in Healthcare: Real-world applications, such as disease prediction, diagnostic tools, and personalized medicine, Data Preparation and Processing: Cleaning, normalization, and feature extraction Ethical Considerations in AI. Fuzzy logic and Fuzzy system. Deep learning fundamentals Background: Introduction to neural networks, activation functions, and backpropagation, Convolutional Neural Networks (CNNs): Applications in image processing (e.g., medical imaging analysis), Recurrent Neural Networks (RNNs): Applications in time-series data analysis. Autoencoders and GANs: Data generation and denoising in healthcare IoT, Model Evaluation Metrics: Sensitivity, specificity, accuracy, and ROC-AUC in medical applications.								
Unit 2	Netw Netw denoi									
Unit 3	IoT architectures for medical devices and the role of AI in making IoT devices IoT Fundamentals: IoT architecture, components, and protocols (e.g., MQTT, CoAP) in healthcare, IoT for Medical Applications: Remote monitoring, smart wearables, and patient tracking, Edge Computing vs. Cloud Computing: Real-time data processing and integration with AI algorithms, AI in IoT: Enabling intelligent IoT devices, predictive maintenance, and smart diagnosis.									
Unit 4	IoT enabled biosensor and bio-signal acquisition device principles Biosensors: Types, working principles, and integration with IoT for health monitoring, Signal Acquisition Processing: Techniques for collecting and preprocessing bio-signals (e.g., ECG, EMG, EEG), IoT Device De Principles: Power management, communication protocols, and data security, AI-Driven Analytics: Process bio-signals using AI and ML models (e.g., anomaly detection, trend analysis), Design Challenges: Scalabi interoperability, and robustness of IoT-enabled biosensors in healthcare, Case Studies: Development of IoT-b medical devices like glucose monitors, heart rate monitors, and wearable devices.									

- The Internet of Medical Things (IoMT): Healthcare Transformation (Advances in Learning Analytics for Intelligent Cloud-IoT Systems) by R. J. Hemalatha (Editor), D. Akila (Editor), D. Balaganesh (Editor), Anand Paul (Editor)-Whiley
- 2. The Internet of Things by Samuel Greengard (Author), MIT Press

- Chen, Y. W., & Jain, L. C. Deep learning in healthcare. Paradigms and Applications; Springer: Berlin/Heidelberg, Germany.
- 4. Jain, V., & Chatterjee, J. M. Machine learning with a health care perspective. Cham: Springer, 1-415.

Course Code: BM312201BM Subject Name: Bioelectricity Credits (L-T-P-Cr): 3-1-0-3

Course Outcome					
S.No.	Outcomes	PO Level			
CO1	Students will be able to demonstrate biopotential and current in cell membrane channels	PO1			
CO2	Students will be able to apply transport equation in ion channels	PO2			
CO3	Students will be able to analyze and evaluate action potential generation and impulse propagation	PO2			
CO4	Student shall be able to evaluate impulse propagation	PO3			

		udents si sues	and electrical stimulation of excitable PO4					
CO6		udents si gineerin	c tissue and neuromuscular junction PO4					
				Aı	rticulation [Matrix:(C	PO-PSO Mapping)	
СО	PO 1	PO2	PO3	PO4	PSO 1	PSO 2		
CO1	2	1	-	1	3	3		
CO2	3	3	2	2	3	3		
CO3	3	3	3	3	3	3		
CO4	2	3	2	1	3	3		
CO5	3	3	2	2	3	3		
CO6	3	. 3	3	3	3	3		
Unit	Syllabus							
Ome					Synabus			
Unit 1	Cu eq Ne Do	urrent in uation, i ernst pot onnan E	solution mobility tential, C quation,	n, moles , temper hibbs- parallel	currents in and ampere ature variati	s, ionic co ons, flux o	rane channels nposition, notation for ion species, Nernst-Planck ne to diffusion plus electric field, membrane structure, annel structure by electron microscopy, ion channels detection bes, channel statistics, Concept of passive and active transport.	
	Ac Vo	uation, in the control of the contro	solution mobility tential, C quation, al metho tential g amp and	n, moles temper hibbs- parallel ds, maci	currents in and ampere ature variation conductance conductance conductance coscopic character and impurity clamp, Ho	e model, connel kinet	apposition, notation for ion species, Nernst-Planck le to diffusion plus electric field, membrane structure, annel structure by electron microscopy, ion channels detection bes, channel statistics, Concept of passive and active transport.	
Unit 1	Ac Vo	tion pot oltage classical tracella oherical oer input	tential g amp and tant field cell stim t impeda	n, moles temper dibbs- parallel ds, maci eneration d patch d equation, ance, ax	currents in and ampere ature variation conductance conductance concerns and impurity clamp, Hoon, core conductant stimulation	e model, connel kinet dise propared distance remains a fibers, transient, fi	apposition, notation for ion species, Nernst-Planck le to diffusion plus electric field, membrane structure, annel structure by electron microscopy, ion channels detection to es, channel statistics, Concept of passive and active transport. [ation] ey membrane model, Hodgkin-Huxley Conductance equation	
Unit 1 Unit 2	Ac Vo GI Ex Sp fib ex	tion pot ltage cl lk const tracellustra	tential g amp and tant field amp and tant field alar poten ar poten r release	eneration department d	currents in and ampere ature variation conductance con	e model, cannel kinet ductance remaisent, fransient, fr	annel structure by electron microscopy, ion channels detection best, channel statistics, Concept of passive and active transport. Tation ey membrane model, Hodgkin-Huxley Conductance equation odel, cable equation, propagation of signal in nerve fibers. The excitable tissues existing the excitable tissues existing the excitable tissues of the excitable tissues of the excitable tissues.	

Bioelectricity, Robert Plonskey

Course Co BM312202	Devices and implants	Medical Credits (L-T-P-Cr): 3-1-0-3
Pre-rec	quisites: NIL	
	Course Outcome	
S.No	Outcomes	PO Level
CO1	Understand medical device design principles, biomaterials, and engineering	d human factors PO1

(A)

W

R

CO2	Apply fabricat	tion techniques li	ke 3D printing, n	nachining, and surf	face modifications	PO2		
CO3	Ensure regula	Ensure regulatory compliance with CDSCO, BIS, ISO 13485, and ISO 14971 standards.						
CO4	Evaluate device	Evaluate device performance through preclinical testing, clinical trials, and validation						
CO5	Develop and assurance met		using CAD mod	elling, prototyping	g tools, and quality	PO4		
		Arti	culation Matrix: (CO-PO-PSO Mapp	oing)			
СО	PO1	PO2	PO3	PO4	PSO1	PSO2		
CO1	2				3	3		
CO2	3	3	2	2	3	3		
CO3	3	3	3	3	3	3		
CO4	2	3	2	1	3	3		
CO5	2	3	2	1	3	3		

A & b

Unit	Syllabus
Unit 1	Introduction to Medical Device/Implant Design
	Overview of medical devices and implants: Definition, classification, and significance in healthcare. Design thinkin and innovation: Identifying unmet clinical needs, brainstorming solutions, and conceptual design. Human Factor Engineering: Ensuring usability and ergonomics in device design. Biomaterials Selection: Criteria for choosin appropriate materials considering biocompatibility and functionality.
	Engineering Principles, Prototyping, and Fabrication Techniques
Unit 2	Mechanical and electrical principles relevant to medical devices. Prototyping techniques: From conceptual sketche to functional prototypes. Computer-Aided Design (CAD): Utilizing CAD tools for precise modelling. Fabrication techniques: Additive manufacturing principles and applications: Understanding layer-by-layer fabrication and it advantages in creating complex geometries. Materials Used: Investigating biocompatible materials suitable for 3I printing implants and devices. Case Studies: Reviewing successful implementations of 3D-printed medical devices Machining, Forming, Molding, and Assembly: Overview of conventional manufacturing processes used in medical device production
Unit 3	Regulatory Standards and Quality Assurance Indian Regulatory Framework: Overview of the Medical Devices Rules, 2017, and the role of the Central Drug Standard Control Organization (CDSCO). International Standards: Understanding ISO 13485 and its implications for quality management systems. Product Lifecycle Management: From design and development to post-market surveillance. Risk Management: Implementing ISO 14971 for identifying and mitigating potential risks.
	Testing, Validation, and Clinical Evaluation
Unit 4	Preclinical Testing: Bench tests, in vitro studies, and animal testing protocols. Clinical Trials: Designing an conducting clinical investigations to assess safety and efficacy. Performance Evaluation: Ensuring devices medintended performance criteria. Compliance with Testing Standards: Adherence to standards set by the Bureau of Indian Standards (BIS) and other international bodies.

1. Denend, L. (2015). Biodesign. Cambridge University Press.

Baura, G. D. (2011). Medical device technologies: a systems-based overview using engineering standards. Academic Press.
 Wiklund, M. E., Kendler, J., & Strochlic, A. Y. (2015). Usability testing of medical devices. CRC press.

4. Weinger, M. B., Wiklund, M. E., & Gardner-Bonneau, D. J. (Eds.). (2010). Handbook of human factors in medical device design. CRC Press.

5. Durfee, W., & Iaizzo, P. (2014). Medical device innovation handbook. Lulu. com.

Course Code: BM	312203BM	Subject Name: Characterization of Medical Device	Credits (L-T-P- Cr) : 3-1-0-3
Pre-requisi	ites: NIL		
		Course Outcome	
S.No.	Outcomes		PO Level
CO1	Students shall	understand the fundamentals of material properties	PO1
CO2	Students shall	master various characterization techniques	PO2
CO3	Students sha	all analyze and interpret characterization data	PO3

CO4	Students		ble to identify a	and quantify extractal	oles and leachable	from	PO4
			Arti	culation Matrix: (C	O-PO-PSO Mapp	ing)	
СО	PO1	PO2	PO3	PO4	PSO1	PSO2	
CO1	2	1		1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
ÇO4	2	3	2	1	3	3	
Unit	Syl	labus					

Unit 3 Unit 4	General principles of chemical compatibility assessments – extraction and leaching, types of extraction, examples of extraction sequence, recommended extractions, principle of extraction, Additional factors to consider ISO 10993-18 (2012), ISO 10993-18 (2020), linking extraction conditions to medical devices categories.
Unit 2	Principle and instrumentation of Transmission Electron Microscopy, Scanning Electron microscopy Scanning probe microscopy, Electron spectroscopy for surface analysis, vibrational spectroscopy for molecular analysis, Thermal Analysis
	Optical principles, instrumentation, specimen preparation, imaging modes, confocal microscopy, X- Ray Diffraction methods – Generation of X-rays, absorption, Diffraction basics, wide angle x-ray diffraction and scattering, X – ray spectroscopy for elemental analysis

Yang Leng, Materials Characterization Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia), 2008

Dennis Jenke, Extractables and Leachables: Characterization of Drug Products, Packaging, Manufacturing and Delivery Systems, and Medical Devices 1st Edition, Wiley, 2022

Course Code: BM312204BM		Subject Name: Sterilization Techniques for Medical Device	Credits (L-T-P-Cr): 3-1-0-
Pre-requisites:	NIL		
S.No.			
CO1	Demo	onstrate an understanding of the fundamental principles of steril	ization
CO2		ss the effectiveness of different sterilization methods based on fa- rial compatibility, and operational requirements.	ctors such as microbial load,

	Articulation Matrix: (CO-PO-PSO Mapping)
CO4	Understand and adhere to local and international sterilization guidelines and standards to ensure safety and efficacy in sterilization practices.
CO3	Identify and describe the different sterilization techniques (e.g., heat, chemical, filtration, radiation) and the mechanisms by which they kill or inactivate microorganisms.

СО	PO1	PO2	PO3	PO4	PSO1	PSO2
CO1	2	1		1	3	3
CO2	3	3	2	2	3	3
CO3	3	3	3	3	3	3
CO4	2	3	2	1	3	3

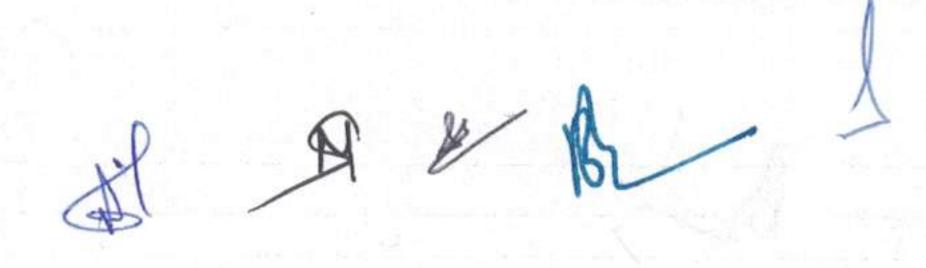
Unit	Syllabus
Unit 1	Various materials used in medical devices, Types of sterilizations – dry heat, steam, ethylene oxide, hydrogen peroxide, water quality used for steam sterilization, air quality used for drying, Cleaning of medical devices cleaning products, cleaning methods, mechanical cleaning
Unit 2	Preparation and packaging for reprocessing, post cleaning inspection, Packaging and wrapping material packaging techniques, materials, specific guidelines for various sterilization techniques, Labelling, Chemica disinfectants, Decontamination of endoscopes
Unit 3	Sterilization of reusable medical devices, Immediate use steam sterilization (IUSS) system ("flash" sterilization), Reuse of single- use medical devices, Transporting medical devices to and from a decontamination facility, Processing of instruments in dental practice
Unit 4	Radiation Sterilization, Gamma irradiators, Electron accelerators, Dosimetry and the radiation sterilization process, microbiological aspects of radiation sterilization, Regulatory issues for radiation sterilization centers - ISO 13485, ISO 11137:2006

Trends in Radiation Sterilization of Health Care Products, International Atomic Energy Agency, Vienna, 2008 Decontamination and Reprocessing of Medical Devices for Health-care Facilities

Course Code: BM312205BM	Subject Name: Drug Delivery System	Credits (L-T-P-Cr): 3-1-0-3
Pre-requisites: NIL		

	Course Outcome	
S.No.	Outcomes	PO Level
CO1	Understanding the fundamentals of the drug delivery system and its need in biomedical applications.	PO1

CO2	Apply the fundamental aspects of the drug delivery system.	PO2
СОЗ	Analyse the pharmacokinetics behind a drug delivery system.	PO2
CO4	Evaluate the physics and principles of matrix-based drug delivery systems like hydrogel based, transdermal patch, and fundamentals of vaccine delivery.	PO3
CO5	Summarize a comprehensive knowledge on drug delivery systems needed for the pharmaceuticals industries.	PO4


Articulation Matrix: (CO-PO-PSO Mapping)						
CO	PO1	PO2	PO3	PO4	PSO1	PSO2
CO1	3	1		1	3	3
CO2	3	2	2	3	3	3
CO3	2	3	3	3	3	3
CO4	3	3	3	2	3	3
CO5	2 3 3 3					
Unit	Syllabus					
	Overview, dosage form-tablet, capsule, parenteral etc. classification of drug delivery system, chemically controlled system, diffusion-controlled system, controlled release mechanism-Membrane reservoir system, Matrix system, swelling controlled release system, biodegradable controlled release system. Fundamental Principles of Drug Delivery: Introduction of pharmacokinetics and pharmacodynamics, diffusive transport, diffusion in heterogeneous					
Jnit 2	Matrix system Fundamenta	stem, diffusion-co n, swelling contro Il Principles of Dr	ntrolled system lled release syst ug Delivery:	, controlled release tem, biodegradable	mechanism-Membra controlled release sys	ne reservoir system, stem.
	Fundamenta Introduction	n, swelling contro	ntrolled system lled release syst rug Delivery: ics and pharma	controlled release em, biodegradable codynamics, diffus	mechanism-Membra controlled release sys	ne reservoir system, stem.
Jnit 2 Jnit 3	Fundamenta Introduction system, passa Pharmacokii Common roi	n, swelling control I Principles of Dr of pharmacokinet ige of drug through netics: utes of systemic	ntrolled system lled release syst rug Delivery: ics and pharma n membrane dru drug administ	controlled release em, biodegradable ecodynamics, diffus grelease kinetics fi	ive transport, diffusion different biopoly	ne reservoir system, stem. on in heterogeneous mer matrices.

Text Books:

Drug Delivery: Fundamentals and Applications, Second Edition. (2016). United States: CRC Press.
 Drug Delivery: Principles and Applications. (2016). Germany: Wiley.

Reference Books:

- 1 Shargel, L., Yu, A. B. (2016). Applied Biopharmaceutics & Pharmacokinetics, Seventh Edition. Singapore: McGraw- Hill Education.
- 2. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. (2016). United Kingdom: Wiley.

Course Code: BM312401BM	Subject Name: Biosensor and Bioelectronics lab	Credits (L-T-P- Cr): 0-0-3-2
Pre-requisites: NIL		
	Course Outcome	

			Cours	se Outcome					
S.No.	Outcomes								
CO1	Tom	To make student understands the basic working of capacitive based biosensors							
CO2	Tom	To make student understands the basic working of chemical biosensors							
CO3	To g	To get familiar with different types of amplifiers used in device design							
CO4	To understand and design active filters using ICs						PO4		
				Ar	ticulation Mat	rix: (CO-PO-PSO Mapp	ing)		
СО	PO1	PO2	PO3	PO4	PSO 1	PSO2			
CO1	2	1		1	3	3			
CO2	3	3	2	2	3	3			
CO3	3	3	3	3	3	3			
CO4	2	3	2	1	3	3			

CO4	2	3	2	1	3	3				
Experiments		Experiment Title								
E1	To des	To design and set up a stable multivibrator of 1000 Hz frequency and 60% duty cycle using IC 555								
E2	Evalua	Evaluation of transfer characteristics of a capacitive biosensor.								
E3	Evaluation of transfer characteristics of a chemical biosensor									
E4	Evalua	Evaluation of transfer characteristics of a self-assembly biosensor								
E5	Evalua	Evaluation of transfer characteristics of a differential operational amplifier								
E6	Evalua	ation of trar	sfer charac	teristics of a	n instrumenta	tion amplifier				
E7	Evalua	ation of trar	sfer charac	teristics of o	peration ampl	ifier-based filters				
E8	Evalua	ation of trar	sfer charac	teristics of a	n integrated s	ensor circuit with I	DAQ system			

Course Code: BM312402BM	Subject Name: Tissue Engineering and Device Interaction Lab	Credits (L-T-P-Cr): 0-0-3-2
-------------------------	---	-----------------------------

Pre-requisites: NIL

	Course Outcome	
S.No.	Outcomes	PO Leve
CO1	Able to evaluate physical characteristics of developed scaffolds	PO1

A

N

B

CO2	Able to im	plement cellular inte	gration with sc	affolds			PO2
CO3	Able to des	sign customized bior	eactor for tissu	e engineering a	application		PO3
CO4	Able to in	terpret cell membra	ne interaction	with substrate	e in different bi	oreactor conditions	PO4
		Art	iculation Mat	rix: (CO-PO-1	PSO Mapping)		
СО	PO1	PO2	PO3	PO4	PSO1	PSO 2	
CO1	2	1	, Mexico	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
CO4	2	3	2	1	3	3	
Experiments				Experiment 7	Γitle		
E1	Developme	ent of polyelectrolyte	complex base	d scaffold usin	g electrospinning	g technique	
E2	Scaffold pl	nysical and mechanic	al characteriza	tion			
E3	Cell adhesi	ion study on develop	ed scaffold and	l its mechano-t	ransduction eval	uation using AFM	
E4	Topograph	y patterning by self-a	assembly meth	od using lithog	graphy on synthes	sized scaffold	
E5	Evaluation	of cell adhesion trac	tion forces on p	oatterned surfa	ce topographic so	caffold	
E6	Evaluation	of therapeutic biorea	actor interface	on cell viability	y		
E7	Evaluation	of therapeutic biorea	actor interface	on cell membra	ane turgidity		

Course Code: BM313301BM	Subject Name: ECG and Bedside Monitor System	Credits (L-T-P-Cr): 2-0- 2-3
-------------------------	---	------------------------------

Experiments	Experiment Title				
E1	ECG machine disassembling session				
E2	Bedside monitor disassembling session				
E3	Identification of testing points on ECG machine session				
E4	Identification of testing points on Bedside monitor machine session				
E5	Troubleshooting methodologies of ECG machine session				
E6	Troubleshooting methodologies of bedside monitor session				

Course Code: BM313302BM	Subject Name: Defibrillator and Heart Lung Machine	Credits (L-T-P-Cr): 2-0- 2-3

A ST B

Pre-requisites: NIL				
Experiments	Experiment Title			
E1	Defibrillator machine disassembling session			
E2	Heart lung machine disassembling session			
E3	Identification of testing points on Defibrillator machine session			
E4	Identification of testing points on Heart Lung Machine session			
E5	Troubleshooting methodologies of Defibrillator machine session			
E6	Troubleshooting methodologies of Heart lung machine session			

Course Code: BM313303BM		Subject Name: Ventilator and Anesthesia Machine	Credits (L-T-P-Cr) : 2-0- 2-3			
Experiments		Experiment Title				
E1	Ventilator machine disassembling session					
E2	Anesthesia machine disassembling session					
E3	Identification of testing points on Ventilator machine session					
E4	Identification of testing points on Anesthesia Machine session					
E5	Troubleshooting methodo	logies of Ventilator machine session				
E6	Troubleshooting methodo	logies of Anesthesia machine session				

Course Code: BM313304BM	Subject Name: Hemodialyzer and Endoscope	Credits (L-T-P-Cr): 2-0-2-3

Experiments Experiment Title	
E1	Hemodialyzer machine disassembling session
E2	Endoscope machine disassembling session
E3	Identification of testing points on Hemodialyzer machine session
E4	Identification of testing points on Endoscope Machine session
E5	Troubleshooting methodologies of Hemodialyzer machine session
E6	Troubleshooting methodologies of Endoscope machine session

Course Code: BM313305BM

Subject Name: Single and Multi- Channel
Semi auto biochemistry Analyzer

Credits (L-T-P-Cr): 2-0- 2-3

>

A

2/

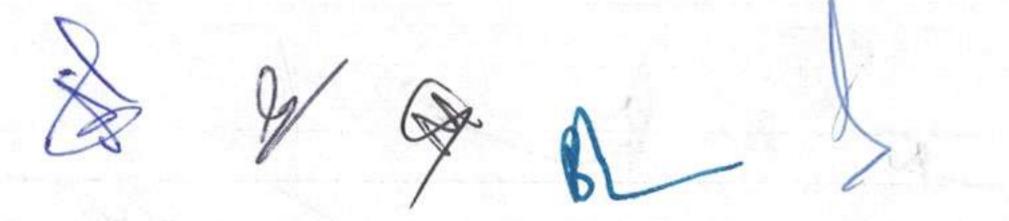
B

Experiments	Experiment Title	
E1	Single Channel Semi auto biochemistry Analyzer machine disassembling session	
E2	Multi-Channel Semi auto biochemistry Analyzer machine disassembling session	
E3	Identification of testing points on Single Channel Semi auto biochemistry Analyzer machine session	
E4	Identification of testing points on Multi Channel Semi auto biochemistry Analyzer Machine session	
E5	Troubleshooting methodologies of Single Channel Semi auto biochemistry Analyzer machine session	
E6	Troubleshooting methodologies of Multi-Channel Semi auto biochemistry Analyzer machine session	

Course Code: BM313306BM	Subject Name: Full Auto Biochemistry Analyzer and Arterial Blood Gas Analyzer	Credits (L-T-P-Cr): 2-0- 2-3
	Analyzer and Arterial Blood Gas Analyzer	

Pre-requisites: NIL

Experiments	Experiment Title	
E1	Full Auto Biochemistry Analyzer machine disassembling session	
E2	Arterial Blood Gas Analyzer machine disassembling session	
E3	Identification of testing points on Full Auto Biochemistry Analyzer machine session	
E4	Identification of testing points on Arterial Blood Gas Analyzer Machine session	
E5	Troubleshooting methodologies of Full Auto Biochemistry Analyzer machine session	


E6	Troubleshooting methodologies of Arterial Blood Gas Analyzer machine session	
----	--	--

Course Code	: BM313307BM	Subject Name: ELISA and PCR Instrument	Credits (L-T-P-Cr): 2-0-2-3
Experiment	Experiment Title Experiment Title		
E1	ELISA machine disassembling session		
E2	PCR machine disassembling session		
E3	Identification of testing points on ELISA machine session		
E4	Identification of testing points on PCR Machine session		
E5	Troubleshooting methodologies of ELISA machine session		
E6	Troubleshooting methodologies of PCR machine session		

Course Code: BM313308BM	Subject Name: Blood Cell Count Analyzer and Mass Spectroscopy	Credits (L-T-P-Cr): 2-0- 2-3
	Instrument	

Al Al & Br

Experiments	Experiment Title		
E1	Blood Cell Count Analyzer machine disassembling session		
E2	Mass Spectroscopy machine disassembling session		
E3	Identification of testing points on Blood Cell Count Analyzer machine session		
E4	Identification of testing points on Mass Spectroscopy Machine session		
E5	Troubleshooting methodologies of Blood Cell Count Analyzer machine session		
E6	Troubleshooting methodologies of Mass Spectroscopy machine session		

