NATIONAL INSTITUTE OF TECHNOLOGY, RAIPUR (Institute of National Importance) G.E. Road, Raipur (C.G.)- 492010

Department of Physics- Course Plan: Physics-II

Units	Topics	Time / hour	Teaching Method	Resources
Units 1: Theory of Semicon ductors	Crystal structure and Bravais lattice	1	Class Room	Puri, Babar
	Unit cell characteristics		Self Study	Puri Babar
	Miller indices, inter planar spacing	1	Class Room	Puri Babar
	Reciprocal lattice space	1	Class Room	Puri babar
	Crystal structure determination via XRD		Assignments	S. Pillai
	Periodic potential and K-P model	1	Class Room	Puri Babar
	Bands in semiconductor (SC) and effective mass	1	Class Room	Puri Babar
	Density of states and electron concentration in conduction band	1	Class Room	Puri Babar
	Holes in valence band and Fermi level in intrinsic SC		Sef-Study	Puri Babar
	Doping and Fermi level in extrinsic SC	1	Class Room	Puri Babar
	Conductivity and mobility of SC	1	Class Room	Puri Babar
	Law of mass action and charge neutrality	1	Class Room	Puri Babar
	condition in doped SC			
	Band gap and mobility determination by four		Assignments	internet
	probe technique			
	Hall effect, magneto resistance and sensors	1	Class Room	S.Pillai
	Total hours	10		
Unit 2: Semicon ductor Devices	Diode characteristic and voltage regulator	1	Class Room	Rakshit
	LED and solar cell	1	Class Room	Rakshit
	Rectifiers, microwave generation and tunnel diodes		Self-Study	Rakshit
	Transistor design and its components	1	Class Room	Rakshit
	Mode of operation and transistor input and output characteristics study	1	Class Room	Rakshit
	Numericals on Transistor operation		Assignments	Rakshit
	Application of Transistor as switch and amplifiers	1	Class Room	Rakshit
	Application of Transistor as oscillators, Barkhausen condition	1	Class Room	Rakshit
	Design and characteristics of JFET	1	Class Room	Rakshit
	Evaluation of design and working of bipolar transistor and FET		Assignments	Rakshit
	Design and characteristics of MOSFET	1	Class Room	Rakshit
	Voltage gain, impedance of operational amplifiers	1	Class Room	Rakshit
	Operational amplifiers as inverting, non-inverting, and summing amplifiers	1	Class Room	Rakshit
	Total hours	10		

NATIONAL INSTITUTE OF TECHNOLOGY, RAIPUR (Institute of National Importance) G.E. Road, Raipur (C.G.)- 492010

Units 3:	Gradient, divergence, curl and their significance	1	Class Room	Griffiths
Electro	Line, surface, volume integrals and applications	1	Class Room	Griffiths
magneti	Gauss divergence and Stoke theorems verification	1	Class Room	Griffiths
c Waves	Conceptual problems		Assignments	Griffiths
	Gauss's law, Ampere's law and Faraday's law		Self Studies	Griffiths
	Continuity equation, and Modified Ampere's law	1	Class Room	Griffiths
	Displacement current and its technological aspects	1	Class Room	Griffiths
	Maxwell's equations	1	Class Room	Griffiths
	Conceptual problems		Assignments	
	Wave propagation in free space and dielectric mediums	1	Class Room	Griffiths
	Poynting vector and power flow in free space,	1	Class Room	Griffiths
	Functioning of RFID and microwave heating	1	Class Room	Internet
	Wireless device radiation and health issues and mitigation	1	Class Room	internet
	Strategies			
	Total hours	10		
Units 4:	Coherence and characteristic of Laser	1	Class Room	Ghatak
Laser	Stimulated emission and Einstein coefficients	1	Class Room	Ghatak
and	Population inversion, pumping and laser emission	1	Class Room	Ghatak
Fiber	Population inversion in 2,3 and 4 energy levels		Assignments	Ghatak
Optics	Ruby and He-Ne laser sources	1	Class Room	Ghatak
	Semiconductor lasers	1	Class Room	Ghatak
	Holography and security	1	Class Room	Ghatak
			Assignments	Ghatak
	Applications of laser in science, industry and safety		Self Study	Ghatak
	Structure, classification and advantages of Optical fibers	1	Class Room	Ghatak
	Internal reflection and Principle of light propagation in fiber		Self Study	Ghatak
	Numerical aperture and acceptance angle of a fibre	1	Class Room	Ghatak
	Attenuation and distortion in fibres and their mitigation	1	Class Room	Ghatak
	Optical communication systems	1	Class Room	Ghatak
	5G, Internet of Things (IoT) and Sustainable developmen		Assignment	internet
	Total hours	10		

Academic Convener